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Abstract

We have made a precise measurement of the inclusive jet cross section at√
s = 1800 GeV. The result is based on an integrated luminosity of 92

pb−1 collected at the Fermilab Tevatron pp Collider with the DØ detec-

tor. The measurement is reported as a function of jet transverse energy

(60 GeV ≤ ET < 550 GeV), and in the pseudorapidity intervals |η| ≤ 0.5

and 0.1 ≤ |η| ≤ 0.7. A preliminary measurement of the pseudorapidity de-

pendence of inclusive jet production (|η| ≤ 1.5) is also discussed. The results

are in good agreement with predictions from next–to–leading order (NLO)

quantum chromodynamics (QCD). DØ has also determined the ratio of jet

cross sections at
√

s = 630 GeV and
√

s = 1800 GeV (|η| ≤ 0.5). This

preliminary measurement differs from NLO QCD predictions.

∗Submitted to the International Europhysics Conference on High Energy Physics, EPS-HEP99,

15 – 21 July, 1999, Tampere, Finland.
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I. INTRODUCTION

Within the framework of quantum chromodynamics (QCD), inelastic scattering between
a proton and antiproton is described as a hard collision between their constituents (partons).
After the collision, the outgoing partons manifest themselves as localized streams of particles
or “jets”. Predictions for the inclusive jet cross section have improved in the early nineties
with next-to-leading order (NLO) perturbative QCD calculations [1] and new, accurately
measured parton density functions (pdf) [2].

The DØ Collaboration has recently measured and published [3] the cross section for the
production of jets as a function of the jet energy transverse to the incident beams, ET . The
measurement is based on an integrated luminosity of about 92 pb−1 of pp hard collisions
collected with the DØ Detector [4] at the Fermilab Tevatron Collider. This result allows a
stringent test of QCD, with a total uncertainty substantially reduced relative to previous
results [5,6]. We have also measured the ratio of jet cross sections at two center-of-mass
energies: 630 (based on an integrated luminosity of about 0.537 pb−1) and 1800 GeV. Ex-
perimental and theoretical uncertainties are significantly reduced in the ratio. This is due to
the large correlation in the errors of the two cross section measurements, and the suppression
of the sensitivity to parton distribution functions (pdf) in the prediction. The ratio of cross
sections thus provides a stronger test of the matrix element portion of the calculation than a
single cross section measurement alone. Previous measurements of cross section ratios have
been performed with smaller data sets by the UA2 and CDF [7] experiments.

II. JET RECONSTRUCTION AND DATA SELECTION

Jets are reconstructed using an iterative jet cone algorithm with a fixed cone radius of
R = 0.7 in η–φ space, (pseudorapidity is defined as η = −ln[tanθ

2
]) [8]. The offline data

selection procedure, which eliminates background caused by electrons, photons, noise, or
cosmic rays, follows the methods described in Refs. [9,10].

III. ENERGY CORRECTIONS

The jet energy scale correction, described in [11], removes instrumentation effects as-
sociated with calorimeter response, showering, and noise, as well as the contribution from
spectator partons (underlying event). The energy scale corrects jets from their reconstructed
ET to their “true” ET on average. An unsmearing correction is applied later to remove the
effect of a finite ET resolution [3].

IV. THE INCLUSIVE JET CROSS SECTION

The resulting inclusive double differential jet cross sections, 〈d2σ/(dET dη)〉, for |η| ≤ 0.5
and 0.1 ≤ |η| ≤ 0.7 (the second region for comparison to Ref. [6]), are compared with a
NLO QCD theoretical prediction [1]. Discussions on the different choices in the theoretical
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calculation: pdfs, renormalization and factorization scales (µ), and clustering algorithm
parameter (Rsep) can be found in Refs. [8].

Figure 1 shows the ratios (D − T )/T for the data (D) and JETRAD NLO theoretical
(T ) predictions based on the CTEQ3M, CTEQ4M and MRST pdf’s [4,5] for |η| ≤ 0.5.
(The tabulated data for both |η| ≤ 0.5 and 0.1 ≤ |η| ≤ 0.7 measurements can be found in
Ref. [12].)

The predictions are in good quantitative agreement with the data, as verified with a
χ2 =

∑
i,j(Di − Ti)(C

−1)ij(Dj − Tj) test, which incorporates the uncertainty covariance
matrix C. Here Di and Ti represent the i-th data and theory points, respectively. The
overall systematic uncertainty is largely correlated.

Table I lists χ2 values for several JETRAD predictions using various parton distribution
functions [2]. The predictions describe both the |η| ≤ 0.5 and 0.1 ≤ |η| ≤ 0.7 cross section
very well. The measurement by DØ and CDF are also in good quantitative agreement within
their systematic uncertainties [3].

TABLE I. χ2 comparisons between JETRAD and |η| ≤ 0.5 and 0.1 ≤ |η| ≤ 0.7 data for

µ = 0.5Emax
T , Rsep=1.3R, and various pdfs. There are 24 degrees of freedom.

pdf |η| ≤ 0.5 0.1 ≤ |η| ≤ 0.7

CTEQ3M 23.9 28.4

CTEQ4M 17.6 23.3

CTEQ4HJ 15.7 20.5

MRSA´ 20.0 27.8

MRST 17.0 19.5

|ηjet| < 0.5
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or
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FIG. 1. The difference between data and JETRAD QCD predictions normalized to predictions.

The bands are the total experimental uncertainty.
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V. η DEPENDENCE OF THE INCLUSIVE JET CROSS SECTION

DØ has made a preliminary measurement of the pseudorapidity dependence of the in-
clusive jet cross section. Figure 2 shows the ratios (D − T )/T for the data (D) and JE-

TRAD NLO theoretical (T ) predictions using the CTEQ3M pdf set for 0.5 ≤ |η| < 1.0 and
1.0 ≤ |η| < 1.5. The measurements and the predictions are in good qualitative agreement.
The pseudorapidity reach of this measurement is currently being extended to η = 3.0 and
the detailed error analysis is being completed.
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FIG. 2. Pseudorapidity dependence of the inclusive jet cross section (0.5 ≤ |η| < 1.0 and

1.0 ≤ |η| < 1.5). Comparison between data and NLO QCD predictions. The bands are the total

systematic uncertainty in the experiment.

VI. RATIO OF SCALE INVARIANT JET CROSS SECTIONS

A simple parton model would predict a jet cross section that scales with center-of-mass
energy. In this scenario, E4

T · E d3σ
dp3 , plotted as a function of jet xT ≡ 2 ET√

s
, would remain

constant with respect to the center-of-mass energy. Figure 3 shows the DØ measurement of
E4

T ·E d3σ
dp3 (stars) compared to JETRAD predictions (lines). There is poor agreement between

data and NLO QCD calculations using the same µ in the numerator and the denominator
(probability of agreement not greater than 10%). The agreement improves for predictions
with different µ at the two center-of-mass energies.

In conclusion, we have made precise measurements of jet production cross sections. At√
s=1800 GeV, there is good agreement between the measurements and the data. The ratio

of cross sections at
√

s=1800 and 630 GeV, however, differs from NLO QCD predictions,
unless different renormalization scales are introduced for the two center-of-mass energies.
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FIG. 3. The ratio of scale invariant jet cross sections. The stars are the DØ data, the band is

the systematic uncertainty, and the lines are the NLO QCD predictions.
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